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Abstract Nitrosation reactions of malononitrile by three
nitrosating agents, HONO, ClNO, and N2O3, have been
theoretically investigated at the B3LYP/cc-pVTZ and MP2/
cc-pVDZ levels. Two possible competitive paths for nitro-
sation of malononitrile to give 2-nitroso-malononitrile were
proposed: (a) direct C-nitrosation and (b) N-nitrosation and
subsequent nitroso transfer from N to C atom. The
calculations show that at both B3LYP and MP2 levels,
path b is kinetically favored over path a for nitrosations by
HONO and N2O3. In the case of ClNO, the B3LYP predicts
preference of path b, while the MP2 calculations suggest
that both paths have similar rate-determining barriers. The
data suggest that N2O3 is the preferred nitrosating agent for
the nitrosation of malononitrile in aqueous solution.
Transformation of 2-nitroso-malononitrile to form malo-
nonitrileoxime via intramolecular proton transfer has also
been explored, and it is found that inclusion of an
assistant water molecule can drastically accelerate the
tautomerization.
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Introduction

Nitrosation reactions [1] play important roles in many areas
of chemistry. For example, due to the ability to generate
toxic and carcinogenic N-nitrosamines [2], nitrosation
reactions have aroused much interest in biological chemistry
[3, 4]. Nitrosation reactions are also related to the chemical,
petroleum, and explosives industries.

Malononitrile (1, Scheme 1) is a highly reactive com-
pound undergoing a rich and varied chemistry [5]. It has
been widely used as a starting material or reaction
intermediate since its methylene group and either one or
both nitrile groups can participate in condensation reactions
in the synthesis of addition products and heterocyclic
compounds [6–8]. In the laboratory, the nitrosation of
malononitrile under aqueous acidic conditions leads to the
formation of malononitrileoxime (4, Scheme 1) [9–11],
which can be used as a precursor material in the synthesis
of nitrogen-rich compounds [11, 12]. However, no theoret-
ical investigations on the nitrosation mechanism of malono-
nitrile have been carried out to the best of our knowledge.

In this work, we have concentrated on the nitrosation
chemistry of malononitrile to give a theoretical insight into the
reaction mechanism. Three nitrosating agents of the form
XNO, where X is a strong nucleophilic species, were taken
into account. The first nitrosating agent is nitrous acid,
HONO. The second one is nitroso chloride, ClNO, which is
formed by the reaction of HONO with hydrochloric acid
(Eq. 1), a commonly used acid in the nitrosation of
malononitrile [11, 13]. The third nitrosating agent considered
here is dinitrogen trioxide, N2O3, which is obtained by the
dehydration between two HONO molecules (Eq. 2). Theo-
retical elucidation of the formation of ClNO [14] and N2O3
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[15, 16] have been previously reported. In our calculations,
we have focused on the nitrosation mechanisms.

HONOþ HCl ! ClNOþ H2O ð1Þ

2HONO ! N2O3 þ H2O ð2Þ
Nitrosation of malononitrile proceeds through initial

formation of C-nitroso species, 2-nitroso-malononitrile (2,
Scheme 1). We proposed two mechanistic possibilities to
give 2-nitroso-malononitrile, leading from malononitrile
with nitrosating agents, as shown in Scheme 1. For the
first path, path a, there is a direct attack of the nitroso of
nitrosating agent on the methylene carbon atom of
malononitrile to give 2-nitroso-malononitrile, 2, with an
HX molecule. The second path, path b, is a stepwise
process, beginning with the nitroso of nitrosating agent
attacking on the nitrile nitrogen atom of malononitrile to
generate the N-nitroso species, 3, with an HX molecule.
Subsequent intramolecular N → C nitroso transfer then
derives the N-nitroso species, 3, to 2-nitroso-malononitrile,
2. Our main purpose of this work is to present theoretical
knowledge of the transition states and free energy barriers
for the nitrosations of malononitrile, to investigate the two
mechanistic possibilities, to compare the nitrosating capa-
bilities of the three nitrosating agents, and to make a reliable
assessment of their roles in the nitrosating reaction. We have
also explored the energetics for the tautomerization of 2-
nitroso-malononitrile, 2, to malononitrileoxime, 4, in an
effort to explain the experimentally observed product.

Computational details

All the minimum and transition state geometries were
located using both the B3LYP hybrid functional [17, 18]
with the cc-pVTZ basis sets [19, 20] and the second-order

Møller − Plesset perturbation theory [21] with the cc-
pVDZ basis sets [19, 20] as implemented in the Gaussian
03 program package [22]. Vibrational frequency calcula-
tions were performed to confirm that the transition state
structures presented one imaginary frequency, whereas the
minimum energy structures had only real frequencies.
Intrinsic reaction coordinate (IRC) [23, 24] pathways were
traced to verify the connectivity between minima and
associated transition states. The natural population analy-
sis (NPA) of charge was performed by the natural bond
orbital (NBO) analysis [25–29] using the NBO 3.1
program [30] in Gaussian 03 at the MP2/cc-pVDZ level.
Since the experimental studies of the nitrosation of
malononitrile were carried out in aqueous solution [9–
11], the effect of solvent medium was investigated at both
the B3LYP and the MP2 levels using the polarizable
continuum model (PCM) [31] applying the dielectric
constant of water (ε=78.39) at their corresponding gas
phase optimized geometries. All free energies reported
were calculated under standard conditions (298.15 K and
one atmosphere), with the thermal correction of Gibbs free
energy in the gas phase. All the calculations have been
done with Born-Oppenheimer approximation since in
most cases this approximation can describe chemical
reaction very well [32–36].

Results and discussion

Nitrosation of malononitrile by HONO

Nitrous acid, HONO, is known to bear trans and cis
isomers (Fig. 1) with competing stability [1, 37]. Both
trans- and cis-HONO were considered as the nitrosating
agents in the calculation. Figure 2 shows the computed
energetics and the optimized geometries of the reactants,

Scheme 1 Possible paths for
nitrosation of malononitrile, 1
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transition states and products for the nitrosation of malono-
nitrile, 1, by HONO. The energy profiles in Fig. 2a involve
an initial complex formation, CP1, between malononitrile
and trans-HONO, followed by either C- or N-nitrosation
reaction. At the MP2/cc-pVDZ level, a free energy barrier
of 36.5 kcalmol-1 is predicted for the C-nitrosation reaction
(path a, TS1) in the gas phase, where the nitroso of trans-
HONO attacks on the methylene carbon atom of malononi-
trile, while an H transfers from malononitrile to the
hydroxyl group of trans-HONO. The NPA charge of the
transferred H is calculated to be 0.515, indicating that it is
more like a proton than a hydrogen transfer. This C-
nitrosation reaction leads to the formation of 2-nitroso-
malononitrile, 2, with a water molecule, and the reaction is
slightly endothermic by 1.9 kcalmol-1. At the B3LYP/cc-pVTZ

level, however, no transition structure with TS1 conformation
could be found.

For the N-nitrosation transation state TS2, the nitroso
group of trans-HONO attacks onto the nitrile nitrogen of
malononitrile with an H transfer from malononitrile to the
hydroxyl group of trans-HONO, leading to the generation
of N-nitroso species, 3, and a water molecule. The
calculated NPA charge of the transferred H in TS2 is
0.529, also more like a proton transfer. The free energy
barrier of TS2 at the MP2 level is 31.9 kcalmol-1 in the gas
phase, which is 4.6 kcalmol-1 preferred in energy than that
for the C-nitrosation (TS1, 36.5 kcalmol-1). Similar barrier of
34.8 kcalmol-1 for TS2 is predicted at the B3LYP/cc-pVTZ
level. However, the formation of 3+H2O undergoes a much
stronger endothermic reaction (21.1 kcalmol-1) with respect
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Fig. 2 Free energy profiles for the nitrosation of malononitrile, 1, by HONO in the gas phase (in kcalmol-1) at the MP2/cc-pVDZ (numbers in
regular form) and B3LYP/cc-pVTZ (numbers in italics) levels. Numbers in parentheses are the relative free energies in water solvent

Fig. 1 Optimized geometries of
the nitrosating agents (HONO,
ClNO, and N2O3), H2O, HCl
and HNO2 at the MP2/cc-pVDZ
(numbers in regular form) and
B3LYP/cc-pVTZ (numbers in
italics) levels. Bond lengths are
in angstroms, and angles are in
degrees
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to the formation of 2+H2O (1.9 kcalmol-1). These results
indicate that though the C-nitrosation is thermodynamically
favored over the N-nitrosation, the N-nitrosation reaction is
kinetically more preferable. The preference for initial N-
nitrosation can be understood as reflecting the reduction in
ring strain of the transition states. In path a, transition state
TS1 holds a strained four-membered ring structure, whereas
in path b, TS2 is a less strained six-membered ring transition
state, leading to the lower activation barrier.

Figure 2b shows the free energy profiles for the nitro-
sation reactions by cis-HONO. Similar to the NPA
calculations in TS1 and TS2, the NPA charges obtained
for the transferred H in TS3 and TS4 are 0.519 and 0.531,
respectively, indicating the proton transfer nature. The free
energy barrier for the N-nitrosation (TS4) is predicted to be
34.5 (35.6) kcalmol-1 in the gas phase at the MP2/cc-pVDZ
(B3LYP/cc-pVTZ) level, which is 5.3 (9.5) kcalmol-1 lower
than that for the C-nitrosation transition state TS3, also
suggesting the preference for the N-nitrosation mechanism.

The inclusion of solvent effect of water, through the
continuum model, has also been studied. As shown in
Fig. 2, at the MP2/cc-pVDZ level, the solvent effect lowers
all free energy barriers but by small amount of 0.1∼
4.1 kcalmol-1. At the B3LYP/cc-pVTZ level, the solvent
effect slightly decreases the barrier of TS3 by 3.1 kcalmol-1

and slightly increases the barriers of TS2 and TS4 by 2.8
and 1.7 kcalmol-1, respectively. However, water may play
an additional explicit role in catalyzing the reaction.
Therefore, we explored the possible role of an assistant
water molecule in the nitrosation reactions of malononitrile
by HONO.

The energy profiles for the water-assisted nitrosations of
malononitrile by HONO are shown in Fig. 3, together with
the optimized geometries. Two transition states, TS2′ and

TS4′, which are the water-assisted transition states for the
N-nitrosation of malononitrile by trans-HONO (TS2) and
cis-HONO (TS4), respectively, were found. All efforts to
locate the water-assisted transition states for the C-
nitrosation of malononitrile by trans-HONO (TS1) or cis-
HONO (TS3) were unsuccessful. As shown in Fig. 3, the
presence of the assistant water molecule little influences the
gas phase free energy barriers, which are predicted to be
33.5 (37.7) kcalmol-1 for TS2′ and 34.1 (38.9) kcalmol-1

for TS4′ at the MP2/cc-pVDZ (B3LYP/cc-pVTZ) level,
respectively. Further inclusion of the solvent effect,
however, leads to the increase of the barriers to 39.0
(46.9) and 41.3 (47.9) kcalmol-1 for TS2′ and TS4′ at the
MP2/cc-pVDZ (B3LYP/cc-pVTZ) level, respectively, sug-
gesting the disadvantage of the water-assisted nitrosation
mechanism in aqueous solution. Therefore, our calculations
indicate that for the nitrosation of malononitrile by HONO
in aqueous solution, water has non-catalyst character, but
only serves as solvent.

Nitrosation of malononitrile by ClNO

The optimized geometrical structures and energetics for the
nitrosation of malononitrile, 1, by ClNO are shown in Fig. 4.
Both paths a and b start with the initial formation of the
complex, CP5, which lies 1.8 and 5.2 kcalmol-1 above its
separated components in the gas phase at the MP2/cc-pVDZ
and B3LYP/cc-pVTZ levels, respectively. The direct C-
nitrosation of malononitrile by ClNO proceeds over a four-
membered ring transition state TS5 with an energy barrier of
34.9 kcalmol-1 in the gas phase at the MP2/cc-pVDZ level,
and the resulting formation of 2 with an HCl molecule is
endothermic by 6.5 kcalmol-1 with respect to the reactants.
At the B3LYP/cc-pVTZ level, a much larger barrier of
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Fig. 3 Free energy profiles for the water-assisted nitrosation of malononitrile, 1, by HONO in the gas phase (in kcalmol-1) at the MP2/cc-pVDZ
(numbers in regular form) and B3LYP/cc-pVTZ (numbers in italics) levels. Numbers in parentheses are the relative free energies in water solvent
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41.4 kcalmol-1 is obtained, which is 6.5 kcalmol-1 higher
than that obtained at the MP2/cc-pVDZ level. This barrier
height difference brought about by the two methods seems
attributed to the different transition structure behaviors. The
MP2 predicted distance between the C atom and the
transferred H atom of transition state TS5 is 1.421 Å, which
is ∼0.08 Å smaller than that obtained at the B3LYP level
(1.499 Å). This smaller C⋅⋅⋅H distance indicates that this
transition structure at the MP2 level appears to be late
compared to the B3LYP obtained transition state. Therefore,
transition state TS5 at the MP2 level resembles a little bit
closer to the stable complex CP5 rather than the less stable
complex CP6, presenting a relatively lower barrier height.

For path b, the MP2/cc-pVDZ level predicts that the free
energy barrier for the N-nitrosation transition state TS6
(35.0 kcalmol-1) is almost the same as that of TS5,
indicating essentially identical preference for both C- and
N-nitrosations by ClNO. The free energy barrier obtained at
the B3LYP/cc-pVTZ level for TS6 (34.4 kcalmol-1),
however, is 7.0 kcalmol-1 lower than that of TS5,
suggesting the kinetical preference of N-nitrosation. The
NPA charges of the transferred H in TS5 and TS6 are 0.335
and 0.347, respectively. Therefore, these H transfers are
also proton rather than hydrogen transfers. Solvent effect

appears to have unfavorable influence over the calculated
energetics: the activation barriers are slightly increased, and
the reactions become more endothermic at both the MP2
and B3LYP levels.

The energetics of the water-assisted nitrosations of
malononitrile by ClNO were also calculated, which are
presented in Fig. 5, together with the optimized geometries.
It is found that inclusion of an assistant water molecule
slightly increases the gas phase activation barriers by 3.0
(2.3) and 0.2 (1.0) kcalmol-1 for TS5′ and TS6′ at the MP2/
cc-pVDZ (B3LYP/cc-pVTZ) level, respectively. Additional
involvement of solvent effect further increases the barrier
heights, similar to the trend found in the case of nitrosations
by HONO. This suggests that in water solution, the
nitrosation reaction by ClNO would also proceed in a
nonwater-assisted mechanism.

Nitrosation of malononitrile by N2O3

For dinitrogen trioxide, N2O3 (Fig. 1), two isomers are
identified, namely asym- and sym-N2O3 [38, 39], and the
asym isomer is thought to be more stable. Both these two
N2O3 isomers were considered in the nitrosating processes.
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Fig. 4 Free energy profiles for the nitrosation of malononitrile, 1, by
ClNO in the gas phase (in kcalmol-1) at the MP2/cc-pVDZ (numbers
in regular form) and B3LYP/cc-pVTZ (numbers in italics) levels.
Numbers in parentheses are the relative free energies in water solvent

6.5(16.9)

35.4(43.8)

43.7(47.5)

22.8(39.6)

10.5(13.3)

19.6(26.1)

14.9(27.1)

0.0(0.0)

6.5(12.1)

25.7(31.4)

7.3(22.6)

24.4(42.0)

37.9(43.8)

1.5(12.9)0.0(0.0)

35.2(43.7)

1+ClNO+H2O CP5'

TS5'

TS6'
CP7'

CP6'

3+HCl+H2O

2+HCl+H2O

Fig. 5 Free energy profiles for the water-assisted nitrosation of
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italics) levels. Numbers in parentheses are the relative free energies in
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Figure 6 shows the optimized geometries and the energetics
for the nitrosations of malononitrile by asym- and sym-
N2O3, with energy values referring to 1+asym-N2O3

(Fig. 6a), and 1+sym-N2O3 (Fig. 6b), respectively.
Totally six transition states, TS7-TS12, have been located,

in which TS7, TS8, and TS9 derive from 1+asym-N2O3,
while TS10, TS11, and TS12 are formed by 1+sym-N2O3.
For the nitrosations by asym-N2O3, transition states TS7 and
TS8 proceed via direct C-nitrosation (path a), in which there
is a replacement of malononitrile methylene hydrogen atom
by the nitroso group of asym-N2O3, leading to the formation
of 2+HNO2 and 2+trans-HONO, respectively. The B3LYP

barrier heights for TS7 and TS8 in the gas phase are 51.5
and 39.0 kcalmol-1, respectively, which are in good
agreement with the barriers of 49.2 kcalmol-1 for TS7 and
41.4 kcalmol-1 for TS8 at the MP2 level. The barrier height
difference between TS7 and TS8 seems most likely due to
the strained four-membered ring formed in TS7 with respect
to the less strained five-membered ring formed in TS8. For
N-nitrosation by asym-N2O3 (path b), transition state TS9
was located via an activation barrier of 40.5 (33.0) kcalmol-1

in the gas phase at the MP2/cc-pVDZ (B3LYP/cc-pVTZ)
level, which is lower than those of the C-nitrosation
transition states TS7 and TS8. The calculated NPA charges
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Fig. 6 Optimized geometries (bond lengths in angstroms) of the
transition states, the reactant and product complexes and free energy
profiles (in kcalmol-1) for the nitrosation of malononitrile, 1, by N2O3

in the gas phase at the MP2/cc-pVDZ (numbers in regular form) and
B3LYP/cc-pVTZ (numbers in italics) levels. Numbers in parentheses
are the relative free energies in water solvent

1022 J Mol Model (2011) 17:1017–1027



for the transferred H in TS7∼TS9 range from 0.394 to 0.532,
the largest value is found for TS9, and the lowest one is for TS7,
suggesting proton transfers in these reactions. Solvent effect
appears to have little influence over the activation barriers of the
nitrosations of malononitrile by asym-N2O3, which causes the
changes in the barriers by 0.3∼5.1 kcalmol-1.

For the nitrosations by sym-N2O3, transition states
TS11∼TS12 have activation barriers of 32.8∼37.2 kcal
mol-1 in the gas phase at the MP2/cc-pVDZ level, all of
which are lower in energy relative to those for the
nitrosations by asym-N2O3. The barriers obtained at the
B3LYP/cc-pVTZ level for transition states TS11∼TS12
range from 34.5 to 39.0 kcalmol-1, similar to those
predicted at the MP2/cc-pVDZ level. The NPA charges
for transferred H in TS10, TS11, and TS12 are predicted to
be 0.425, 0.440, and 0.511, respectively. Therefore, all of
these H transfers are also proton transfers. Inclusion of
solvent effect is shown to have a favorable influence on the
reaction barriers for the nitrosations by sym-N2O3, which
decreases the activation barriers at both the MP2 and
B3LYP levels. On the other hand, solvent effect also
changes the stabilization order of the three transition states.
In the gas phase, TS12, which is an N-nitrosation transition
state, is predicted to have the lowest activation barrier.
However, when solvent effect is included, TS11, the other
N-nitrosation transition state, becomes the lowest-barrier
transition state, lying 29.4 and 32.2 kcalmol-1 above 1+
sym-N2O3 at. MP2/cc-pVDZ and B3LYP/cc-pVTZ levels,
respectively. Therefore, the same clear energetic preference
for the N-nitrosation mechanism is also predicted for the
nitrosations by sym-N2O3 in aqueous solution.

To determine whether a water molecule could serve as
catalyst to accelerate the nitrosation of malononitrile by N2O3,
we performed analogous water-assisted calculations. The
optimized geometries of the transition states, the reactant and
product complexes of each channel and the energetics are
presented in Fig. 7. The inclusion of the additional water
molecule does not have a substantive effect on the gas phase
barriers of the six transition states. At the MP2/cc-pVDZ
level, the activation barriers of TS8′ and TS9′ are slightly
decreased relative to their corresponding non-assisted
transition states, and the activation barriers of the other
four transition states become a little bit higher. At the
B3LYP/cc-pVTZ level, the activation barriers of all six
water-assisted transition states are larger than the reactions
without the assistance of a water molecule. When the effect
of water solvent, in which the experiment was conducted,
is also taken into account, the activation barriers of all six
transition states increase by 5.4∼11.0 kcalmol-1 relative to
their corresponding non-assisted reactions in solvent at the
MP2 level and by 6.6∼10.4 kcalmol-1 at the B3LYP level.
Thus, our calculations reveal that nitrosation of malononitrile
by N2O3 in aqueous solution proceeds via a nonwater-

assisted mechanism, similar to the nitrosations by HONO
and ClNO.

N to C nitroso transfer and comparison of the nitrosating
activity of the three nitrosating agents

Following the N-nitrosation, a subsequent N → C nitroso
transfer occurs in path b to transform the N-nitroso species, 3
to the thermodynamically favored C-nitroso species, 2
(Scheme 1). This intramolecular nitroso transfer is quite
facile with a free energy barrier of only 2.4 kcalmol-1 in the
gas phase or 1.6 kcalmol-1 in water solvent at the MP2 level
(Fig. 8). The B3LYP also predicts a low barrier of 7.1 (4.4)
kcalmol-1 in the gas phase (in water solvent). This indicates
that the N-nitrosation is the rate-determining step for path b.
Taking together the results for the nitrosations by all three
nitrosating agents, and comparing the energetic barriers for
the rate-determining transition states of both mechanistic
nitrosation paths a and b, our calculations predict that
although path b is a stepwise pathway via N-nitrosation
and N to C nitroso transfer, it is kinetically more preferred
than the concerted path a for nitrosations by HONO and
N2O3 at both MP2/cc-pVDZ and B3LYP/cc-pVTZ levels. In
the case of ClNO, the B3LYP also predicts the preference of
path b, while nearly equal activation barriers are obtained for
both N- and C-nitrosation mechanisms at the MP2 level,
suggesting almost identical preference for both paths.

To investigate the nitrosating activity of the three nitro-
sating agents in the experimental reaction condition, we
compared the lowest activation free energy barriers in water
solvent for nitrosations by the three nitrosating agents, and
both water-assisted and non-assisted reactions are considered
(Fig. 9). At the MP2/cc-pVDZ level, the lowest barrier
heights of the non-assisted reactions range from 29.4 kcal
mol-1 to 37.3 kcalmol-1 with N2O3 being the lowest one and
ClNO being the highest one. When the assistance of a water
molecule is introduced, the lowest barrier heights increase
for all three nitrosating agents, though the stabilization order
remains unchanged. The B3LYP/cc-pVTZ calculations pre-
dict similar results. Without the assistance of the water
molecule, nitrosations by N2O3 and ClNO present the lowest
(32.2 kcalmol-1) and the highest (38.5 kcalmol-1) barriers,
respectively. Introducing an assistant water molecule
increases all three barriers by 5.3∼9.6 kcalmol-1. These
results suggest that nitrosation of malononitrile is a
nonwater-assisted process in the aqueous environment, and
N2O3 is probably the main nitrosating agent.

Intramolecular transformation of 2-nitroso-malononitrile
to malononitrileoxime

Once the C-nitroso species 2-nitroso-malononitrile, 2, is
formed, it transforms via intramolecular H transfer to the
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oxime species, malononitrileoxime (4), which is the
experimentally observed nitrosating product of malononi-
trile [9–11]. The H transfer transition state TS14 (Fig. 10)
involves a four-membered ring and leads to the generation
of malononitrileoxime, 4a, where the CNOH chain is in cis
form. Relatively strong positive charge of 0.511 is found
for the transferred H by NPA calculation, indicating this is
more like a proton transfer rather than a hydrogen transfer.

The activation free energy barrier for this transformation is
predicted to be rather high in the gas phase at both the
MP2/cc-pVDZ (57.5 kcalmol-1) and B3LYP/cc-pVTZ
(56.0 kcalmol-1) levels, and solvent effect is found to
slightly influence the barrier within 1 kcalmol-1.

Since barriers that involve proton transfer can be consid-
erably lowered by adding a water molecule [40–46], the
assistance of an explicit water molecule for the reaction was
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Fig. 7 Optimized geometries (bond lengths in angstroms) of the
transition states, the reactant and product complexes and free energy
profiles (in kcalmol-1) for the water-assisted nitrosation of malononitrile,

1, by N2O3 in the gas phase at the MP2/cc-pVDZ (numbers in regular
form) and B3LYP/cc-pVTZ (numbers in italics) levels. Numbers in
parentheses are the relative free energies in water solvent
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considered here. As shown in Fig. 10, with the assistance of a
water molecule (TS14′), the barrier of the proton transfer drops
drastically to 29.9 kcalmol-1 in the gas phase at the B3LYP
level, in good agreement with the barrier (29.7 kcalmol-1)
obtained at the MP2 level. This energetic effect on the barrier
via addition of a water molecule can also be ascribed to the
relief of the ring strain. When no water molecule is added, the
proton transfer proceeds through a strained four-membered
ring transition state (TS14), while inclusion of an assistant
water molecule extends the transition state to a less strained
six-membered ring structure (TS14′), which significantly
reduces the energy barrier. Therefore, our calculation strongly
supports a water-assisted mechanism in this proton transfer
process. Subsequently, the cis form malononitrileoxime, 4a,
may undergo tautomerization via TS15, where the hydrogen
atom rotates around the N-O bond, to form the more stable
trans isomer, 4b. This rotation proceeds over a moderate
barrier of 6.2 (7.2) kcalmol-1, and the final trans-malononi-
trileoxime, 4b, is 3.9 (3.6) kcalmol-1 lower in energy than the
cis isomer, 4a at the MP2/cc-pVDZ (B3LYP/cc-pVTZ) level.
The overall transformation is exothermic by 14.5 kcalmol-1 in
the gas phase and 14.9 kcalmol-1 in solvent at the MP2/cc-
pVDZ level, and the B3LYP calculation predicts a little bit
larger exothermicity of 18.4 and 18.6 kcalmol-1 in the gas
phase and in water solvent, respectively, indicating the
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Fig. 10 Free energy profile for the transformation of 2-nitroso-
malononitrile, 2, to malononitrileoxime, 4, in the gas phase (in kcalmol-1)
at the MP2/cc-pVDZ (numbers in regular form) and B3LYP/cc-pVTZ
(numbers in italics) levels. Numbers in parentheses are the relative free
energies in water solvent
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(numbers in italics) levels. Numbers in parentheses are the relative
free energies in water solvent
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thermodynamical preference of malononitrileoxime over
2-nitroso-malononitrile.

Conclusions

We have theoretically examined two possible paths for the
nitrosation of malononitrile by three nitrosating agents
(HONO, ClNO, and N2O3) to form 2-nitroso-malononitrile
at the MP2/cc-pVDZ and B3LYP/cc-pVTZ levels. The
indirect nitrosation path involves N-nitrosation followed by
N → C nitroso group transfer. The N-nitrosation is the rate-
determining step, while the nitroso transfer is very facile,
which requires a barrier of only 2.4 (7.1) kcalmol-1 in the
gas phase at the MP2/cc-pVDZ (B3LYP/cc-pVTZ) level
and an even lower barrier of 1.6 (4.4) kcalmol-1 in the
experimental condition of aqueous solution. This indirect
path is calculated to be more preferred than the direct C-
nitrosation path for the nitrosations by HONO and N2O3.
The origin of the lower energy demand of the N-
nitrosation with respect to the C-nitrosation is mainly
attributable to the reduction in ring strain of the transition
state for the former reaction. Whereas in the case of
ClNO, the MP2/cc-pVDZ calculations give almost equal
activation barriers for both C- and N-nitrosations, while
the B3LYP/cc-pVTZ calculations still prefer the N-
nitrosation. Introducing an assistant water molecule does
not have a favorable effect on the nitrosations by any of
the three nitrosating agents in aqueous solution. Compar-
ing the nitrosating activity of these three nitrosating agent
predicts that nitrosation of malononitrile in aqueous
occurs with N2O3 as the main nitrosating agent. The
presence of a water molecule is found to act as a catalyst to
substantially reduce the activation barrier of the intramolec-
ular proton transfer from 2-nitroso-malononitrile to malono-
nitrileoxime, which is the resulting observed species of the
nitrosation of malononitrile.
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